

Women in Engineering ProActi∨e Network Transforming culture in engineering education

Identity: Why is it important to think about how women and girls see themselves in science and engineering

> Marie-Claire Shanahan, Ph.D. University of Alberta

WEPAN 2011-2012 Webinar Series

 Host: Diane Matt, Executive Director, WEPAN (Women in Engineering ProActive Network)

ProActive

in engineering education

- Moderator: Jenna Carpenter, Ph.D., Associate Dean; College of Engineering & Science, Louisiana Tech University; Director of Professional Development, WEPAN BOD
- Presenter: Marie-Claire Shanahan, Ph.D., Associate Professor, Science Education; University of Alberta

Housekeeping Information

- The webinar will use Voice Over Internet. If the sound quality is not good, a teleconference line is available:
- Phone #: 1-312-878-0222
- Code: 174-555-634

To be notified of future webinars:

- Sign up for the Knowledge Center newsletter at: <u>http://</u> wepanknowledgecenter.org
- Survey following webinar—please respond!

How to Ask a Question

- Participant microphones are muted for webinar quality.
- Type your question in the "Question" space in the webinar control panel.
- A presenter will respond as time allows.

Transforming culture in engineering educati

Who's on the Call Today

• We have almost 100 registered participants.

 Thank you to ASEE WIED, ASEE ERM, NAPE Stem Equity Pipeline, PGEList, ADVANCE, AWM, and others for helping us spread the word!

What's WEPAN? www.wepan.org

WEPAN is the nation's leading organization for transforming culture in engineering education to promote the success of all women.

- mobilize diverse, inclusive and collaborative stakeholders
- foster diversity in engineering graduates
- inspire a network of advocates to empower and advance the education of women pursuing engineering and related disciplines
- translate research into practice and develop national models to attract and retain women in engineering

WEPAN Knowledge Center

http://wepanknowledgecenter.org

Goal: Increase the number, scope and effectiveness of initiatives to advance women in engineering.

Catalogued and fully cited resources

Research, reports, data and statistics, agenda papers, bibliographies, best practices, key programs, and more—1,000+

Online Professional Community

Network, collaborate, identify experts, share information

Special online events

Feature WKC Professional Community and networking opportunities

• Use the research, information & data, Submit & suggest resources, Share the WKC with

Women in Engineering ProActi∨e Network Transforming culture in engineering education

Identity: Why is it important to think about how women and girls see themselves in science and engineering

> Marie-Claire Shanahan, Ph.D. University of Alberta

Representation of Women in science

- Since 1980s efforts to encourage women in science have met with differing degrees of success.
 - Degrees earned from 1960 to 2007:
 - Biology: 25% →60%
 - Physics: 14% →21%
 - Engineering: $0.4\% \rightarrow 14\%$

(Source: NSF, Science and Engineering Indicators 2000 and 2010)

Percentage of all bachelors degrees that were awarded to women

What predicts participation in science?

- Intrinsic interest in science (Tai, Liu, Maltese, & Fan, 2006)
- Situational/topical interest in science (Nieswandt & Shanahan, 2009)
- Self-efficacy for science and math (Fouad, et al., 2002)
- Recognition from peers, parents and teachers (Bleeker and Jacobs, 2004)

Poll Question:

In your experience as a scientist or engineer or in your role supporting those in science and engineering, which of these had the greatest influence on your participation in science?

A) Intrinsic interest in science

- B) Situational/topical interest in science
- C) Self-efficacy for science and math
- D) Recognition from peers, parents and teachers

What about gender?

- Stronger impact of encouragement and confidence (Bleeker & Jacobs, 2004)
- Gender appropriateness (Farenga and Joyce, 1999)

What is a science/engineering identity?

- Being a "science person":
 - Seeing oneself as a science person (interest, self-efficacy)
 - Wanting to be a science person (goals, future orientation, career encouragement)
 - Being seen as a science person (recognition and encouragement from parents, friends, peers)

Identity

What influences that identity? Expectations

- Exploratory study of 16-year-old students at a variety of schools:
 - Interviews and open-ended writing (95 students)
 - 2. Questionnaires comparing science to other subjects (129 students)
 - **3**. Questionnaires asking for self-ratings (335 students)

What influences that identity?

- High School Students identified 4 key expectations:
 - Intelligence (e.g., good grades, right answers)
 - Scientifically-minded (e.g., rational, objective)
 - Skilled in science (e.g., designing experiments, drawing conclusions)
 - Well-behaved student (e.g., follows directions, is safe with materials)

Connections to identity

- Self-perceptions of intelligence and scientific mindedness were significant predictors of identity for both male and female students.
 - But their impact was stronger for female students.
- Male and female students rate themselves about equally for being scientifically-minded.
- Female students rate themselves lower on intelligence.

Who can influence it?

- Persistence Research in Science and Engineering Study
 - Subsample of those with high school physics (3,829 students)
 - What high school experiences impacted on identity?
 - Classroom environment
 - Teaching styles
 - Practical work
 - Assessment style

What contributes to strong identities?

- teachers who introduce cutting edge physics topics
- frequent labs addressing students' beliefs about the world
- opportunities for peer teaching
- encouraging student questions and comments
- receiving encouragement from their teachers to pursue physics
- having discussions in class about the benefits of being a scientist

What about gender?

- What didn't have an impact?
 - providing positive female science role models
 - creating opportunities for collaborative group work
 - discussing the lives of female scientists

What about gender?

- What did have an impact?
 - Only one thing: discussing underrepresentation in physics

More on gender

- But...several of the important factors were experienced less frequently by female students:
 - focus on conceptual understanding
 - labs addressing their beliefs about the world
 - discussing currently relevant science topics
 - discussing the benefits of being a physicist

Why identity?

- Identity lets us bring together several factors including interest, ability, confidence, encouragement and social pressures.
 - Offers suggestions for changes that can be encouraged in science and in female students
 - Change the way students see science
 - Change the way students see themselves

Questions?

- Remember:
 - Type your question in the "Question" space in the webinar control panel.
 - A presenter will respond as time allows.

Thank You!

- We will E-mail the PowerPoint to you
- We will E-mail the link to the recorded webinar to you—share with your colleagues!
- Sign up for more webinar notifications at:
 <u>www.wepanknowledgecenter.org</u>

